I Semester B.C.A. Degree Examination, April - 2023 COMPUTER APPLICATIONS

Discrete Structures

Paper: CA-CIT

(NEP 2021 Onwards Scheme)

Time: 21/2 Hours

Maximum Marks: 60

Instructions to Candidates:

Answer any Four questions from each part.

PART-A

Answer any Four questions. Each question carries 2 marks.

 $(4 \times 2 = 8)$

- 1. Define power set with an example.
- 2. Construct the truth table for the proposition $(p \lor \sim q)$.
- 3. Define Equivalence Relation.

4. If
$$\begin{vmatrix} 1 & 2 & -1 \\ 3 & x & -2 \\ 1 & 2 & -3 \end{vmatrix} = 0$$
 then find x?

- 5. Define pseudo graph with an example.
- 6. Write the planar representation of graph K₄.

PART-B

Answer any Four questions. Each question carries 5 marks.

 $(4 \times 5 = 20)$

- 7. Show that the proposition $(p \rightarrow q) \leftrightarrow p \lor q$ is a Tautology.
- 8. Prove by mathematical induction $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$, \forall positive integers 'n'.
- 9. State and prove Pigeonhole principle.

(2)

DCCA₁₀₁

- 10. Find the rank of the matrix $\begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & 2 & 3 & 14 \\ 1 & 4 & 7 & 30 \end{bmatrix}$.
- 11. Find the inverse of the matrix $\begin{bmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7 \end{bmatrix}$
- 12. Define the following terms.
 - i) Path
 - ii) Circuit
 - iii) Walk
 - iv) Trail
 - v) Loop

PART-C

Answer any Four questions. Each question carries 8 marks.

 $(4 \times 8 = 32)$

- 13. a) If $A = \{1,3,5,7,6\}$, $B = \{2,4,6,1,7\}$ and $C = \{3,7,11,5\}$ verify $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
 - b) In a group of 80 people, 42 like Coffee, 60 like Tea and each person like atleast one of the two drinks. Find how many people like both Coffee and Tea? (4+4)
- 14. a) Let $A = \{1,2,3,4,6\}$, R is a relation on A defined by $R = \{(a,b): a,b \in A \text{ "a divides b"}\}$ Write (i) matrix representation of R. (ii) Digraph of R.
 - b) If $f: R \to R$ is defined by f(x) = 4x + 5 then show that f is invertible. (4+4)
- 15. a) Write the converse, Inverse and contrapositive of the given statement "If two integers are equal then their squares are equal".
 - b) How many arrangements can be made from the letters of the word "ASSASSINATION"? In how many of these arrangements do the four S's not come together? (3+5)

(3)

DCCA101

16. a) If
$$A = \begin{bmatrix} 5 \\ 2 \\ -3 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 4 & 6 \end{bmatrix}$ show that $(AB)' = B'A'$.

b) Solve the following system of equations

$$3x-2y+3z=8$$

 $2x+y-z=1$
 $4x-3y+2z=4$ (3+5)

17. a) Examine whether the following graphs are Isomorphic (or) not

b) Define spanning tree with an example.

(6+2)

18. Find the minimum weight spanning tree by Prim's Algorithm.

(8)

